2010-04-01から1ヶ月間の記事一覧
今回は、ロジスティック回帰です。この方法はPRMLで初めて知りましたが、統計学の方では一般的な方法のようです。回帰という名前がついてますが、実際は分類のためのモデルとのこと。ロジスティック回帰では、クラス1の事後確率が特徴ベクトルの線形関数のロ…
今回は、4.1.7のパーセプトロンアルゴリズムを実装します。パーセプトロンは、2クラスの識別モデルで、識別関数は式(4.52)です。 パーセプトロンは、下の条件を満たすような重みベクトルwを学習します。教師信号は、クラス1のとき教師信号+1、クラス2のと…
今回は、4.1.4のフィッシャーの線形判別を試してみました。これは、他の手法と少し毛色が違う感じがします。まず、D次元の入力ベクトルxを(4.20)で1次元ベクトル(スカラー)に射影します。ベクトル同士の内積なので結果はスカラーで、wはxを射影する方向…
4.1節は、データから識別関数を直接的に構成するアプローチとして、 最小二乗法 フィッシャーの線形判別 パーセプトロン が紹介されています。すべて線形識別モデルなので二次元なら直線、三次元なら平面、それ以上なら超平面で分離できる、つまり、線形分離…
さっき共立出版から案内が来て初めて知りましたが、知の創成―身体性認知科学への招待(2005/3/15)の著者、R. Pfeifer氏の新著が出版されたようです。翻訳されるまで全然知りませんでした。非常に面白そうな内容なので読み終わったらレビューしようと思いま…
1.2.5 曲線フィッティング再訪 1.2.6 ベイズ曲線フィッティングのところを実装してみます。前回は、最小二乗法で曲線フィッティングをしたけど、ベイズ的な方法で解こうって話のようです。この2つの節では、 最尤推定 最大事後確率(MAP)推定 ベイズ推定 と…